1) Why do sine and cosine NOT have asymptotes, but the other four trig graphs do? Use unit circle ratios to explain.
When looking at the ratios of both cosine and sine you notice that both ratios are over r. As cosine is equal to y/r and sine is equal to x/r, since the radius, which will always be one, it means that you will never have zero as a denominator. If there is no zero in the denominator to make it undefined, then there will never be any asymptotes. For, asymptotes= undefined. When for the rest of te other trig graphs of cosecant, secant, cotangent, and tangent all have the possibility of the ratio having a zero as a denominator, thus making it undefined. And when it's undefined that only means one thing that it does have asymptotes.
No comments:
Post a Comment